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ВВЕДЕНИЕ

Публичная версия дипломного проекта

Данная версия этого документа содержит более подробную информацию о дипломном проекте на 44 страницы в отличии от сокращенной версии на 30 страниц, представленная в защите проектов.
Теоретическая и практическая части проекта в публичной версии дипломного проекта не была каким-либо образом искажена.
Полный исходный код программы находится:
· в GitHub: https://github.com/tinelix/knowledges;
· в GitVerse: https://gitverse.ru/tinelix/knowledges.
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Актуальность исследования

Доступной образовательной информации с каждым днём становятся больше, и у человека часто возникает потребность структурировать все полученные данные в удобочитаемом виде для того, чтобы получать всю необходимую информацию в одном месте, не заходя на какой-либо другой ресурс, что также критически важно.
С развитием сети Интернет потребность в хранении только растёт, и к середине 2000-х годов появляются различные образовательные онлайн-сервисы, изначально представляющие из себя концепцию баз знаний. Это дало возможность познать мир больше, не выходя из дома.

Цели и задачи работы

Разработанная в рамках дипломной работы программа предназначена для обеспечения большого количества информации, с которым может узнать любой пользователь, и для эффективного управления баз знаний. Соответственно, цель дипломного проекта заключается в разработке консольной программы, которая в первую очередь должна управлять базами знаний и внутри них показывать необходимую для человека информацию. Например, о предмете или о животном.
Для достижения поставленной цели необходимо выполнить следующие задачи:
1. Проанализировать популярные языки программирования с объектно-ориентированным программированием, выявлять их как преимущества, так и недостатки;
2. Изучить структуру данных для хранения информации, предназначения и способы реализации псевдографики и элементов интерфейса на её основе;
3. Реализовать файловый менеджер для упрощения выбора локальных баз знаний;
4. Выбрать подходящий синтаксический анализатор для приведения энциклопедии в соответствующий язык разметки;
5. Привести средство просмотра статей в форматированный вид;

Объект и предмет исследования

Объект исследования — энциклопедии и хранилище справочных материалов.
Предмет исследования — разработка консольной программы-энциклопедии с применением псевдографического интерфейса.

Методы исследования

В рамках данного исследования будет применён комплекс методов, которые позволяет отражать полную картину разработки и внедрения решений:
1. Работа над анализом сопутствующей литературы и открытых источников в сети Интернет, изучение основ псевдографических интерфейсов, особенностей их представления;
2. Анализ существующих решений в данной области;
3. Изучение методов проектирования и моделирования: реализации проектирования архитектуры программы, баз знаний и интерфейса;
4. Изучение методов программирования и интеграции: реализация способов взаимодействия программы с пользователем и реализация просмотра статей.

1. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ
 
1.1.  Представление символов

У любых языков программирования есть средства для работы с символьными строками и их типами, как например:
· в Си и C++ до версии C++11: 
· тип char для хранения символа в переменную (включает численное и символьное представление);
· функция printf, которая выводит текст в терминал;
· функция sprintf, которая выводит текст в массив символов или строку;
· функция strcat, которая объединяет строку;
· функция strcmp, которая сравнивает строки на совпадение;
· функция strlen, которая показывает сколько символов находятся в массиве символов перед знаком завершения ('\0');
· в C++ версии C++11 и выше:
· тип std::string для хранения строки в переменную;
· функция std::cout, которая выводит текст в терминал;
· функция [string].length, эквивалент функции strlen на Си;
· в Python:
· тип str для хранения строки в переменную;
· функция print, которая выводит текст в терминал;
· функция [str].format, выполняющая форматирование строки путем подставления значений переменных;
· в Java:
· тип String для хранения строки в переменную и тип StringBuilder для объединения строки;
· функция System.out.printLn, которая выводит текст в терминал;
· функция String.format для форматирования строки путём подставления значения переменных.

1.1.1.  Принципы стандарта ASCII и кодовых страниц на его основе

Часто в шаблонных проектах можно увидеть код вывода текста «Hello, World!» на нескольких языках программирования, общим остаётся лишь сам текст. Он, как и весь код программы соответствует таблице ASCII, которая представляет из себя набор символов, включая:
· служебные знаки;
· знаки препинания;
· цифры;
· латинские буквы. 

От этого и исходит расшифровка аббревиатуры - American Standard Code for Information Interchange (стандарт кодирования знаков латинского алфавита). Таблица ASCII была разработана Американским национальным институтом стандартов (ANSI) в 1963 году.
Её главное преимущество заключается в том, что эти читаемые символы легко ввести на любой стандартной клавиатуре, и в последствии она получила применение в широких областях науки. Самыми распространенными примерами считается код программы или страницы на языке разметки HTML (HyperText Markup Language) или Markdown.

[image: ]Рис 1. Таблица ASCII в шестнадцатеричном редакторе

Позже, к 1981 году, появились кодовые страницы (кодировки), которые помимо ASCII-символов содержали в себя:
· два смайлика:
· «☺» (в шестнадцатеричной системе счисления: 01);
· «☻» (02);
· четыре карточных символа:
· «♥» (03);
· «♦» (04); 
· «♣» (05); 
· «♠» (06);
· четыре символа окружности:
· «•» (07);
· «◘» (08);
· «○» (09);
· «◙» (0A);
· два символа половой принадлежности:
· «♂» (0B);
· «♀» (0C);
· два символа музыкальных нот:
· «♪» (0D);
· «♫» (0E);
· символ «☼» («солнце», 0F);
· стрелочные символы, такие как:
· «►» (10);
· «◄» (11);
· «↕» (12);
· «↓» (13);
· национальные символы в диапазонах: 
· от 80 до AF;
· от E0 до F7;
· блочные символы:
· «░» (B0);
· «▒» (B1);
· «▓» (B2);
· «█» (DB);
· «▄» (DС);
· «■» (FE);
· символы линий:
· одинарная линия по вертикали или по горизонтали 
(«─» (С4), «│» (B3));
· двойная линия по вертикали или по горизонтали 
(«═» (CD), «║» (BA));
· перпендикулярные линии
(«╧» (CF), «╨» (D0), «┤» (B4));
· комбинированные линии
(«╬» (CE), «╪» (D8), «╫» (D7), «┼» (C5));
· угловатые линии
(«╖» (B7), «┐» (BF), «╕» (B8), «╝» (BC));

Две последние группы символов образуют концепции компьютерных псевдографических интерфейсов, которые упрощают пользователям визуальное восприятие программ и их взаимодействие. Так было до вытеснения полноценных графических интерфейсов.
Сейчас существуют несколько типов компьютерной псевдографики:
· столбчатая псевдографика;
· табличная псевдографика;
· оконная псевдографика;
· ASCII/ANSI-арты – рисунки, сделанные из текстовых или блочных символов.

1.2.  История появления компьютерной псевдографики

До появления стандарта де-факто кодировок на основе ASCII и IBM PC-совместимых компьютеров существовали телетайпы — электронные печатные машины, соединенные между собой парой проводов, преемник тикерных аппаратов, предназначенные для передачи котировок акций телеграфным или телексным способом.
Работали телетайпы следующим образом, как показано на рис. 2 - один абонент печатает свой текст другому абоненту на одном телетайпе, а другой абонент получает этот же текст через принтер другого телетайпа, и наоборот.
 



[image: ]Рис 2. Принцип работы телетайпов

К середине 1970-х годов телетайпы начали эволюционировать — сначала на замену принтеров оснащали экранами для вывода информации, а позже телетайпы преобразились в компьютерные терминалы, для которых не требовалась коммуникация с печатными машинками.
12 августа 1981 г. компания IBM представила компьютер IBM PC 5150 и видеостандарты для него — Monochrome Display Adapter (MDA) и Color Graphics Adapter (CGA).
Стандарт MDA в отличии от CGA был черно-белым и мог отображать 25 строк по 80 символов, что соответствует растровому разрешению в 720 на 350 пикселей, но он поддерживает только отображение символов и не ограничивался использованием только буквенно-цифровых символов и знаков препинания, так как в его основу легла кодовая страница 437. 
[bookmark: firstHeading][bookmark: firstHeading_Копия_1]Его функции впоследствии были унаследованы в последующих видеостандартах, такие как Color Graphics Adapter (CGA), Hercules Graphics Card (HGC), Enhanced Graphics Adapter (EGA) и Video Graphics Adapter (VGA).

1.2.1. Применение компьютерной псевдографики

Применение компьютерной псевдографики сперва получили в прошивках BIOS. 
Прошивка BIOS — самый важный компонент IBM PC-совместимых компьютеров, который выполняет инициализацию аппаратных и периферийных устройств перед загрузкой сектора Master Boot Record (MBR), который в свою очередь загружает операционную систему.
Прошивка BIOS для IBM PC 5150 загружает компьютер следующим образом:
· проверяются аппаратные и периферийные устройства, в том числе память и носители информации;
· затем в память загружается сектор MBR, записанный на дискету;
· в случае отсутствия доступа к дискетам или сектору MBR загружается встроенный в BIOS интерпретатор языка BASIC, с помощью которого разработчики могли написать свои собственные программки.
Интерфейс интерпретатора языка BASIC псевдографический, это можно легко понять по обозначениям функциональных клавиш от F1 до F10 в [image: ]нижней области экрана.
Рис. 3. Интерфейс интерпретатора BASIC в прошивке BIOS.
Из-за того, что архитектура IBM PC изначально была открытой, за исключением BIOS, некоторые IT-компании начали разработать свои собственные варианты BIOS путём метода реверс-инжиниринга «clean-room». Данный метод позволил избежать потенциальных судебных исков со стороны правообладателей, так как он создает похожие решения, несвязанные с оригиналом напрямую.
Award Software и American Megatrends - одни из первых производителей, предложившие меню настроек BIOS в виде псевдографики (см. рис. 4 и 5).


[image: ]Рис. 4. Меню настроек AwardBIOS (1989 г.)

[image: ]Рис. 5. Табличное меню настроек AMIBIOS (1989 г.)
В 1983 году первый полноценный псевдографический интерфейс разработчики начали разрабатывать в компании Bourbaki Inc. для файлового менеджера 1DIR (рис. 6), выходивший для семейства операционных систем DOS. Постепенно псевдографика становится стандартом де-факто и в других консольных программах.
[image: ]
Рис. 6. Интерфейс файлового менеджера 1DIR (1983 г.)

1.3. Функциональные требования

1. работа с локальными файлами:
a. обзор директориев;
b. навигация по директориям;
c. сравнение расширений файлов для конкретного открытия файла;
d. чтение и обработка файлов;
2. обзор статей:
a. показ списка статей по указанной категории;
b. преобразование статей в форматированный вид и его отображение;

1.4. Языки программирования и фреймворки

1.4.1. Язык программирования C++

Языков программирования большое количество. Сейчас особенно популярны такие языки программирования, как Python, Си и C++, но выбор какого-то языка для проекта обычно требует таких критериев, как:
· легкое структурирование кода;
· поддержка объектно-ориентированного программирования и их составляющих (классы, методы, полиморфизм, инкапсуляция, и т. д.);
· поддержка большого числа стандартных функций и библиотек;
· поддержка компиляторов в различных операционных системах (кроссплатформенность);
· возможность статической привязки библиотек, чтобы от пользователя требовалось лишь открыть программу без поиска отдельно установленных библиотек;
· актуальное применение языка программирования в псевдографических программах;

Для разработки данного проекта был выбран язык программирования C++ варианта 1998 года (C++98) по следующим причинам:
· этот вариант известен тем, что это была первая стандартизация языка C++ как таковой (стандарт ISO/IEC 14882:1998);
· этот вариант близок к языку Си, но с ключевыми особенностями, например:
· интуитивно понятное объектно-ориентированное программирование, включая специально выделенные классы;
· подавляющее большинство псевдографических программ и библиотек для них были написаны на Си
· в C++ предусматривается специальный блок extern "C", так как в процессе разработки кода могут быть некоторые несовместимости с языком Си;
· возможность портирования C++ кода на те компиляторы, которые не поддерживают стандарт C++11 и выше, к таким относятся:
· все версии Microsoft Visual C++ вплоть до 2010, что теоретически программу возможно запустить в Windows 98;
· все версии GNU Compiler Collection (GCC) вплоть до 4.8;
· все версии Clang вплоть до версии 3.0;

1.4.2. Фреймворк ncurses

Библиотека curses представляет собой фреймворк для создания псевдографических программ, адаптированные под различные типы терминалов. Она была разработана американским программистом Кен Арнольд в 1978 году.
Она учитывает все особенности терминалов как в плане обновления данных, поступающие на вывод в командную строку, так и в плане поддержки цветовой палитры.
Она также использует базу данных для описания возможностей терминалов и делает процесс создания окон, надписей и других элементов значительно проще и быстрее, чем в любых графических инструментах.
Благодаря такой легкости библиотеки curses для разработчиков, вскоре появилось множество клонов, выполняющие аналогичные функции:
· PDCurses, где вместо базы данных применяются специализированные драйвера терминалов;
· pcurses – бесплатный клон оригинального curses;
· X/Open Curses для UNIX-подобных систем;
· New Curses (ncurses) – открытый проект сообщества GNU с поддержкой большого числа языков программирования.

На сегодняшний день последний применяется в рядах свободного программного обеспечения. Приводится в качестве примера файловый менеджер Midnight Commander (рис. 7) и монитор ресурсов htop (рис. 8).

[image: ]Рис. 7. Интерфейс файлового менеджера Midnight Commander
[image: ]Рис. 8. Интерфейс монитора ресурсов htop

1.4.3. Работа с файлами

Для того, что предоставить возможность пользователю искать базу знаний как файл, размещаемый локально, необходимо знать базовые принципы стандартной библиотеки dirent в C++.
В зависимости от операционной системы или платформы некоторые возможности библиотеки dirent, такие как определение типа объекта в директориях, могут быть недоступны, поэтому для решения данной проблемы нужно добавить набор нестандартных деклараций, связанные с 64-битным представлением чисел, и стандартную библиотеку stat.

1.4.4. JSON как способ представления данных

Для того, чтобы произвести организацию базы знаний в понятный вид и предоставить ему выбор статей, необходимо понять, каким образом лучше всего работать с данными.
Сейчас широко распространен открытый формат JavaScript Object Notation (JSON), так как его важными преимуществами по сегодняшний день являются удобочитаемый синтаксис и универсальность на многих языках программирования.
Файл в данном формате может содержать как массивы, так и вложенные объекты, помимо этого он также может содержать числа, строки, логические значения - "true" («истина») или "false" («ложь»), и пустой указатель — "null". Формат поддерживает экранирование символов через обратную косую черту (обратный слэш) - «\» и перенос строки с кареткой (в JSON "\r\n") или без (в JSON "\n").
В качестве библиотеки для работы с JSON-данными будет применяться JsonCpp версии 0.10.7.

1.4.5. Компилятор GCC и другие инструменты разработки на Windows

Для обеспечения поддержки данного проекта на различных операционных системах существуют порты различных библиотек и инструментов разработки для семейства операционных систем Windows, включая:
· MinGW (Minimalist GNU for Windows) или msys2 – открытая среда разработки c множеством портированных инструментов для создания исполняемых файлов формата Windows Portable Executable;
· GNU Compiler Collection (GCC) – набор компиляторов с открытым исходным кодом, поставляемый во всех популярных операционных системах (дистрибутивах) семейства Linux по умолчанию;
· GNU Debugger (GDB) – средство поиска и обнаружения ошибок в программах (средство отладки), оно может взаимодействовать с популярными средами разработки;
· библиотека New Curses (ncurses) для составления псевдографического интерфейса;
· Kate (KDE Advanced Text Editor) – текстовый редактор проекта KDE с поддержкой подсветки синтаксиса и опциональных LSP-серверов, предназначенных для синтаксической обработки кода перед его успешным выполнением.

2. ПРАКТИЧЕСКАЯ ЧАСТЬ

2.1. Создание последовательности функций приложения

После постановки задачи необходимо спроектировать элементы псевдографического интерфейса для точного взаимодействия программы с пользователем, а также алгоритм работы с файлами и базами знаний для точного представления, как применять данный проект. Алгоритм для проекта построен таким образом:
1. запуск программы:
a. пользователь запускает её через терминал или графический файловый менеджер;
b. библиотека ncurses временно очищает экран терминала для отображения элементов интерфейса, убирает экранирование символов и курсора и прорисовывает верхнюю надпись с пустым окном;
c. программа считывает текущий директорий, создает список вложенных директорий и файлов, находящиеся внутри него и предоставляет пользователю выбор;
d. библиотека ncurses начинает прослушку клавиатуры для определения нажатия клавиш для того, что по нажатию выполнять определенные действия (например, для перемещения по директориям или открытия базы знаний);
2. отслеживание нажатий клавиш:
a. при нажатии клавиши «q» пользователь завершает работу с программой;
b. при нажатии стрелочных клавиш пользователь двигает курсор внутри списка или статьи и листает, если его высота превышает активную область окна;
c. при нажатии клавиши Enter пользователь открывает базу знаний со списком категорий и списком статьей в первой попавшиеся категории;
d. в противном случае, если база не откроется, программа информирует пользователя об ошибке;

2.2. Подготовка и настройка среды разработки

Подготовка и настройка среды разработки является самым важным аспектом при разработке программного обеспечения, так как это обеспечивает подготовленность технической базы проекта для изучения, исследования и тестирования программы.
Для работы с библиотекой ncurses были проделаны следующие шаги:
1. в операционной системе Windows 11:
a. загрузка среды разработки приложений MSYS2: для его установки не требуется лишних телодвижений, все базовые возможности (в том числе, терминал) устанавливаются автоматически, программа установки MSYS2 располагается на GitHub – широко известной системе управления и версиониирования открытых проектов (см. рис. 9);

[image: ]
Рис. 8. Репозиторий среды разработки MSYS2 – актуальная версия программы установки
b. запуск программы установки с помощью файла «msys2-x86_64-ГГГГММДД.exe» и выполнение установки;
c. запуск среды MSYS MINGW64, которая открывает командную строку из меню «Пуск», опциально возможна интеграция среды MSYS2 через Windows Terminal путём создания профилей;
d. загрузка и установка инструментария разработки из репозитория MSYS2 через пакетный менеджер Pacman (см. рис. 9) при помощи команд:
[image: ][image: ]
Рис. 9. Процесс загрузки пакетов из репозитория MSYS2
2. в операционной системе Debian 12:
a. GCC и утилита make встроены по умолчанию, их установка не требуется;
b. загрузка и установка заголовочных файлов библиотеки ncurses через пакетный менеджер APT (см. рис. 10):
[image: ]

[image: ]
Рис. 10. Процесс загрузки пакетов в Debian 12

2.3. Реализация алгоритма выполнения программы

Для реализации кода необходимо разработать структуру классов проекта, каждый из который будет выполнять свои задачи и взаимодействовать с другими классами для решения общей задачи – хранение и работа с локальной энциклопедией. 
Структура самого проекта устроена таким образом (см. рис. 11):
[image: ]Рис. 11. Корень проекта

· в каталоге «libs» входят библиотеки, которые обычно не входят в репозиториях пакетных менеджеров, как например, JsonCpp;
· в каталоге «out» распологаются исполняемые файлы проекта после его успешной сборки;
· в каталоге[image: ] «src» находится исходный код проекта (см. рис. 12);
Рис. 12. Обзор каталога «src» внутри проекта

Сердцем данного проекта является файл «knowledges.cpp» (см. рис 13), который отвечает за запуск программы и обработку событий, происходимые в момент выполнения асинхронных функций вне этого файла.

[image: ]Рис. 13. Функции main() и openFileManager() в файле «knowledges.cpp»

Файл «nstddef.h» (см. рис. 14) содержит нестандартные декларации, связанные с 64-битным представлением чисел, для корректной компиляции исходного кода.

[image: ]Рис. 14. Файл «nstddef.h»

В данном проекте были определены следующие классы:
· в подкаталоге «controls», в котором размещаются классы элементов управления псевдографического интерфейса:
· «ExtWindowCtrl» (файлы «extwnd») - расширяемый класс-обёртка для окон;
· «ListBoxCtrl» (файлы «listbox») вместе с структурой «ListItem» - класс, содержащий логику элемента управления в виде списка;
· «MessageBox» (файлы «listbox») - класс, содержащий логику окна сообщения;
· в подкаталоге «utils», в котором размещаются классы компонентов программы для решения определенных задач:
· «ExtString» (файлы «extstr»), который отвечает за недостающие функции редактирования и сравнения строковых массивов, такие как:
· обрезка текста;
· сравнение концов строк;
· «FileManager» (файлы «fileman»), который отвечает за файловые операции чтения;
· «KnowledgeBase» вместе с структурами «KBCategory» и «KBArticle», отвечающий за функциональность базы знаний;
· «PseudoGUIManager» (файлы «pguiman»), который отвечает за функциональность псевдографического интерфейса, подкрепленная библиотекой ncurses;
· «UIControl» (файлы «uictrl») - базовый класс-носитель для элементов управления;
· в подкаталоге «windows», где размещены классы окон:
· «FileManagerWnd» (файлы «fileman») - окно файлового менеджера;
· «KnowledgeBaseWnd» (файлы «knowbase») - окно базы знаний;
Определены базовые классы-интерфейсы для асинхронных функций, они находятся в подкаталоге «interfaces»:
· «IFileManager» (файлы «fileman») для обработки событий за пределами класса «FileManager»;
· «IPseudoGUIManager» (файлы «pguiman») для обработки нажатий клавиш за пределами класса «PseudoGUIManager»;

Определение классов необходимо для структурирования кода, что повышает гибкость и четкость иерархии программы и упрощает распределение задач для её компонентов.
Файл «knowledges.cpp» разбит на несколько частей:
1. инициализация переменных типов IKnowledgesFileManager и IKnowledgesPseudoGUIManager на основе вышеперечисленных базовых классов-интерфейсов;
2. регистрация этих переменных для запланированной обработки событий за пределами классов FileManager и PseudoGUIManager;
3. показ верхней надписи, идентифицирующая:
a. название программы;
b. номер версии программы;
c. краткое замечание об авторских правах, 
используя метод showTopVersionInfo() из класса PseudoGUIManager;
4. создание окна и инициализация файлового менеджера при помощи функции openFileManager();
5. открытие текущей директории с последующей обработкой имен файлов внутри объекта gFileManWnd типа FileManagerWnd:
a. обрезка длинных имен файлов до 32 символов, как заявлено в макросе MAX_FILENAME_LENGTH, для сохранения краткого контекста файла и выделения свободного места под размер файла и другие столбцы;
b. сравнение расширений файлов с расширением «.json»;
6. обработка событий и нажатий клавиш на клавиатуре:
a. если директория или файл не может быть открыт в этой программе, выводится окно с информацией об ошибке и кнопкой для подтверждения;
b. если открывается директорий, программа считывает с него содержимое для пересоздания списка;
c. если открывается файл, содержащий энциклопедию, программа производит синтаксический анализ на соответствие формату JSON:
i. в случае успешного завершения программа выводит список категорий и статью из первой попавшиеся категории;
ii. иначе выводит окно с информацией об ошибке;
d. нажатие клавиши «q» приводит к завершению работы с энциклопедией и программы, а также завершению процесса.

В библиотеке ncurses клавиши также представляются числовым значением:
· клавиша Esc или комбинации клавиш Alt — 27;
· клавиша Enter — 10;
· стрелка вверх — 3 (только с включенным keypad);
· стрелка вниз —  2 (только с включенным keypad);

Класс ExtString включает в себя:
· статическую функцию «strcut» для обрезки строки по указанной длине и началу;
· статическую функцию «strendq» для сравнения концовок внутри строк;
Класс PseudoGUIManager использует нужные от программы функции библиотеки ncurses (см. рис. 15):

[image: ]Рис. 15. Конструктор класса PseudoGUIManager

· initscr() - временно очищает содержимое командной строки и инициализирует пустой экран терминала;
· keypad() - включает или отключает обработку нажатий стрелочных клавиш;
· noecho() - убирает экранирование напечатанных на клавиатуре символов;
· curs_set(0) — скрывает курсор;
· has_colors() – проверяет у терминала наличие поддержки цветов, показывая результат логически;
· start_color() – инициализирует базовую палитру цветов, каждый из которых имеет порядковый номер:
· красный цвет под номером 1;
· зеленый цвет под номером 2;
· синий цвет под номером 3;
· белый цвет под номером 7;
· темно-зелёный цвет под номером 16;
· черный цвет под номером 28;
· темно-серый цвет под номером 242 и т. д.;
· init_color() – изменяет значение цвета;
· init_pair() – добавляет дополнительный цвет к базовой палитре;
· getmaxyx() - вычисляет ширину и высоту экрана терминала;
· move() - перемещает курсор в указанную позицию;
· chgat() - задаёт параметры форматирования строки (например, жирный шрифт или синий цвет фона)
· refresh() - полностью обновляет содержимое экрана терминала;
· getch() - прослушивает нажатие клавиш на клавиатуре и, возможно, колёсике мыши, если терминал интерпретирует прокрутку как нажатие стрелочных клавиш, и запускает бесконечный цикл;
· clrtoeol() - очищает строку или её часть;
· printw() - печатает текст на экране терминала;
· newwin() - создает окно;
· box() - рисует рамку окна;
· bkgd() - меняет цвет фона внутри экрана терминала;
· clear() - полностью очищает весь экран терминала;
· endwin() - восстанавливает содержимое командной строки;
· delscreen() - удаляет объект экрана терминала из памяти;

Стоит обратить внимание, что большая часть их функций может выполняться как внутри окна, так и с указанием позиции напрямую, и для них существуют приставка «mv», который добавляет функцию move() перед выполнением целевой функции, и приставка «w», который выполняет целевую функцию в пределах окна. Например, mvwprintw() и wrefresh().
Для того, чтобы спроектировать правильную последовательность этих функций внутри этого класса были разработаны вспомогательные функции ради упрощения. Например: для замены текста одной функции mvwprintw() может быть недостаточно, так как после этого остаются следы от старого текста, поэтому сперва следует поместить вспомогательную функцию (см. рис. 16), в который нужно:
· переместить курсор в нужную позицию;
· очистить строку в этой позиции до конца;
· напечатать текст;
· перерисовать рамку окна вместе с заголовком, так как вместе с текстом стирается часть рамки;
· обновить содержимое окна.

[image: ]Рис. 16. Пример вспомогательной функции

Класс элемента управления ExtWindowCtrl состоит из нескольких частей (см. рис. 17):
· конструктор ExtWindowCtrl, который для переменной массива hCtrls выделяет память под хранение максимального количества элементов интерфейса (в данном случае указано число 255);
· альтернативный вариант конструктора ExtWindowCtrl, который дополнительно назначает уникальный идентификатор;
· деконструктор ~ExtWindowCtrl, который освобождает выделенную память;
· функция addControl(), которая добавляет ячейку элементов интерфейса в массив hCtrls в следующий заполненный индекс;
· функция addChildWindow() (см. рис. 17), которая заносит дочернее окно в родительный объект при помощи массива hChildWnds;
· функция getControlsSize(), которая показывает сколько заполнено элементов;
· функция redraw() для перерисовки содержимого окна;
· функция freeWnd(), которая освобождает окно из памяти;
· переменная массива hTitle типа char служит для хранения заголовка окна;
· переменная массива hId типа char служит идентификатором окна для того, чтобы отличить одно окно от других;
· переменные числа hWidth и hHeight служат для определения размера окна - ширины и высоты;
· переменная объекта hWnd объекта типа WINDOW* нужна для выполнения ряда функций библиотеки ncurses, связанные с окном;
· переменная массива hCtrls типа UIControl* служит для хранения элементов интерфейса внутри окна;

[image: ]Рис. 17. Пример функции addChildWindow из класса ExtWindowCtrl

Базовый класс-носитель UIControl (см. рис. 18) содержит:
[image: ]Рис. 18. Класс UIControl

· переменную массива hId типа char - уникальный идентификатор элемента управления;
· переменные чисел hWidth и hHeight для определения размера элемента;
· переменные числе hX, hY для определения положения элемента;

Класс ListBox в отличии от ExtWindow расширен из класса UIControl и он включает в себя:
· конструктор ListBoxCtrl, который инициализирует такие переменные, как:
· gParent для хранения родительского объекта (в данном случае, это объект типа ExtWindow*);
· gListItems, для которой выделяется память в указанном в параметрах количестве пунктов;
· gSelectionIndex с индексом выбранного пункта для текущей страницы;
· hType с типом элемента №1 (унаследована от класса UIControl);
· gPageNumber с номером страницы, на которые делится список по его высоте;
· gItemCount со значением указанного в параметре количества пунктов;
· деконструктор ListBoxCtrl, который освобождает память, выделенную под пункты;
· функция recreate() для очистки и пересоздания списка;
· функция addListItem() для добавления пункта в список;
· функция addSubItem() для добавления подпункта в указанный пункт списка;
· функция getSelectionIndex(), которая возвращает из списка общий индекс выделенного пункта;
· функция setSelectionIndex(), которая задает значение выбранного пункта внутри страницы;
· функция getVirtualSelectionIndex(), которая показывает на экране общий индекс выбранного пункта, прибавленное на единицу, и общее количество пунктов в списке, если выражение gTrackPos равно «true»;
· функция getItemCount() возвращает общее количество пунктов в списке;
· функция goToPage() (см. рис. 19) позволяет пролистывать список на указанной странице;
· функция onKeyPressed() обрабатывает нажатие стрелочных клавиш для навигации по списку;
· функция drawListPointer() присваивает экранный указатель и меняет фон выделяемому объекту; 
[image: ]Рис. 19. Пример функции goToPage из класса ListBoxCtrl

Класс MessageBox (см. рис. 20) также расширен из класса UIControl и включает в себя:
[image: ]Рис. 20. Пример конструктора класса MessageBox

· конструктор MessageBox, где создаётся окно с текстовым сообщением.
Класс FileManager состоит из:
· конструктора FileManager, где в качестве параметров указывается объект-интерфейс типа IFileManager или его производного и выполнятся следующие операции:
· присвоение ссылки на переменную interface к переменной gInterface;
· выделение памяти для переменной массива gEnts типа dirent* (место для хранения имен, а иногда типов файлов) размером в 640 элементов;
· деконструктора ~FileManager;
· функции readDir() (см. рис. 21), которая открывает директорию и совершает циклы добавления объектов, находящиеся внутри директории, в массив gEnts до тех пор, пока список не закончится;
· функции getFile(), которая возвращает объект типа dirent* из массива gEnts по указанному индексу;
· функции getFilesCount(), возвращающая размер элементов, находящиеся внутри директории;
· функции getRealPath(), которая фильтрует двойные точки после адреса для показа реальной пути к директории;
· функции getCurrentPath() для показа пути к текущей директории;
[image: ]Рис. 21. Пример функции readDir из класса FileManager

В структуру проекта также входят интерфейс IFileManager (см. рис. 22), по которому идет обработка событий за пределами класса FileManager в виртуальных функциях:
[image: ]Рис. 22. Класс-интерфейс IFileManager

· onError(), выполняемая в том случае, если на этапе выполнения задачи произошла ошибка и в качестве параметров указывается идентификатор команды (cmdId) и код ошибки (errorCode);
· onResult(), выполняемая в момент успешного выполнения задачи;
· onDirectoryRead(), выполняемая после завершения обзора директории,
и интерфейс IPseudoGUIManager (см. рис. 23), содержащий два варианта виртуальной функции onKeyPressed():
[image: ]Рис. 23. Класс-интерфейс IPseudoGUIManager

· onKeyPressed(char k), где в качестве параметра указывается код введенной клавиши;
· onKeyPressed(char k, ExtWindowCtrl* pExtWnd), который дополняется еще одним параметром — объектом типа ExtWindowCtrl.

2.4. Сборка проекта или преобразование исходного кода в машинный

Для сборки даже самого простого проекта достаточно ввести команду в терминале:
gcc knowledges.cpp -o ./out/knowledges
Однако целенаправленность данного проекта требует значительных усилий, поскольку помимо базовых решений требуются ещё и дополнительные, и чтобы упростить его сборку, необходимо создать Makefile (см. рис. 24) с последовательностью действий: какие параметры нужно передавать компилятору для корректной сборки проекта и в каком виде проект должен быть собран, и отдельно Bash-скрипт (см. рис. 25), который будет доустанавливать недостающие пакеты при необходимости.
[image: ]Рис. 24. Обзор Makefile

В Makefile сначала определяется компилятор, который сперва должен преобразовывать исходный код в машинный для создания исполняемого файла формата ELF (обычно без расширения файла) или Portable Executable (с расширением файла .exe) в зависимости от текущей операционной системы или платформы. 
Тип платформы определяется глобальной переменной OSTYPE и он может содержать несколько значений:
· если сборка производится в Windows, в среде разработки MSYS2, то её значение равно «msys»;
· если сборка производится в Windows, в среде разработки Cygwin, то её значение равно «cygwin»;
· если сборка производится в Linux, то её значение равно «linux-gnu»,
затем указываются:
· каталоги, нужные для сборки проекта;
· заголовки классов;
· ключи к библиотекам;
· исходные коды проекта;
· путь к выходному (исполняемому) файлу;
· особые параметры сборки для среды MSYS2, включающие статическую привязку библиотек;
· команду удаления исполняемых файлов
· цели Makefile’а: основной целью является цель «build»;
[image: ]Рис. 25. Обзор Bash-скрипта build.sh

В файле «build.sh» описывается весь процесс подготовки среды разработки. Стоит учитывать, что разные платформы, как правило, применяют свои собственные пакетные менеджеры и в репозиториях подписывают пакеты похожими именами, особенно это касается ряда крупных дистрибутивов Linux, в частности Ubuntu, Debian, Fedora и Arch.

После завершения сборки проекта нужно запустить программу одним из трех способов:
· через командную строку в терминале;
· через средство отладки;
· через файловый менеджер;

В этой программе присутствует файловый менеджер (рис. 26) и по нему уже можно перемещаться.
[image: ]Рис. 26. Запущенная программа вместе с окном файлового менеджера

2.5. Разработка основной части проекта

Помимо базовых файловых операций программа также должна выполнять главную задачу проекта — обзор статей.
Для этого нужно сперва клонировать репозиторий JsonCpp из GitHub внутри каталога «libs» при помощи инструмента Git (см. рис. 27):
[image: ]Рис. 27. Клонирование репозитория JsonCpp и переход к метке 0.10.7

Затем подключить библиотеку JsonCpp через Makefile (см. рис. 28):

[image: ]Рис. 28. Подключение библиотеки JsonCpp в Makefile
И потом разработать структуру файлов, представляющие набор статей на основе формата JSON, а также разработать механизм обработки файлов.
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/* Creates File Manager window and shows directory listing. */

void openFilelanager() {
gFileMankind = new FileWanagerWnd(gFileMan, (IFilelanager*)gFileManInterface);
gFileMan->readCurrentDir();

¥

ion main function */

I+ Appli

int mainQ) {
gPsGUIManInterface = new IKnowledgesPseudoGUIManager();
gFileManInterface = new TKnowledgesFilelanager(

gFileMan = new FileWanager ((IFileManager*)gFileManInterface);
gPsGuiMan = new PseudoGUINanager ((IPseudoGUINanager*)gPsGUINanInterface);

gPsGuiNan->showTopVersionInfo();
openFilemanager();

delete gPsGuiMan;
return o
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#endif
# include <stdint.h>
#endif

¥

#ifndef INT64_C

#define INT64_C(c) (c ## LL)
#define UINT64_C(c) (c ## ULL)
#endif

#ifndef INT64_MAX
#define INT64_MAX INT_MAX
#endif
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#define INT64_MIN INT_MIN
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/* Initializes ncurses screen. */

PseudoGUINanager : :PseudoGUINanager (IPseudoGUIManager *interface) {

setlocale(LC_ALL,

o8 /* <-- set locale for correct non-ASCII characters
displaying */

initscr(); /% <-- temporally clearing command prompt and initializes
empty screen of ncurses */

keypad(stdscr, true); /1 <-- enables arrow pressed keys handling

noecho(); /% <-- disables escaping of characters typed on the
keyboard *

curs_set(e); /1 <-- makes the terminal cursor invisible

// Creates a color that will be used later if its output is supported by the terminal

if(has_colors() {

¥

start_color();

init_color(COLOR BLUE, 184, 142, 12); // <-- create RGB value for COLOR_BLUE variable
init_pair(1, COLOR WHITE, COLOR BLUE):

init_color(COLOR GRAY, 150, 156, 156); // <-- create RGB value for COLOR_GRAY variable
init_pair(2, COLOR WHITE, COLOR_GRAY):

init_color(COLOR DEEP_BLACK, 0, 0, 8); // <-- create RGB value for COLOR DEEP_BLACK variable
init_pair(3, COLOR_WHITE, COLOR_DEEP_BLACK):

init_color(COLOR RED, 192, 8, 8); // <-- create RGB value for COLOR_RED variable
init_pair(4, COLOR WHITE, COLOR RED);

init_color (COLOR_DARK GREEN, 0, 88, 0); // <-- create RGB value for COLOR_GREEN variable
init_pair(5, COLOR WHITE, COLOR_DARK_GREEN):

bkgd(COLOR_PAIR(3)):

ginterface = interface;

getmaxyx(stdscr, gActiveHeight, gActivewidth);
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81  |void PseudoGUIManager::drawText(ExtWindowCtrl *pExtWnd, char* text, int x, int y) {
82 if(y > pExtind->hHeight - 20)

83 return;

84

85 move(y, 0);

86 welrtoeol(pExthind->hnd) ; /7 <-- clearing line (including window vetical borders)
87 mvwprintw(pExtind->hWnd, y, x, "%s", text); // <-- overwrite line

88

89 box(pExthind->hind, 0, 8); /7 <-- draw window borders

90 mvwprintw( /1 <-- draw window text in top border area
91 pExthind->hhind,

92 6, (pExtWnd->hWidth - strlen(pExtWnd->hTitle)) / 2,

93 "\u2524 %s \u251c", pExtWnd->hTitle

94 )i

95

%6 % WINDOW*

97 * wrefresh( window ) <-- updates the contents of the window for display

98 */

99

100 wrefresh(pExtWnd->hhnd) ;

101 |}
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void ExtWindowCtrl:

addChildwindow(char* id, char* title, int width, int height, int x, int y) {
ExtWindonCtrl *pExtWnd = new ExtWindowCtrl(id);

int realwidth =
int realHeight = 5

realwidth = width;

if(width <= 5) {
realwidth =

} else {
realwidth = width;

¥

if(height <= 5) {
realdeight = 5;
} else {
realdeight = height;
¥

pExtiind->hkind = newwin(realHeight, realWidth, y + 1, x + 1);

sprintf(pExthind->hTitle, "%s", title); "

store wir

W text in ExtWindow object

pExtuind->hwidth = realwidth;
pExtuind->hHeight = realHeight;

-~ draw window borders

box(pExtWnd->hind, 8, 8); "

mvwpr intu( ”
PEXthind->hund,
6, (pExthind->hwWidth - strlen(pExtWnd->hTitle) - 4) / 2,
"\U2524 %5 \u251c", pExtund->hTitle

-~ draw window text in top border area

)

wbkgd(pExtWnd->hlind, COLOR_PATR(2));
keypad(pExthnd->hnd, true);
wrefresh(pExtind->hind) ;
hChildwnds[gChildwndsSize] = pExtwnd;

gChildwndssizess;
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class UIControl {
public
char hId[60];
int hType;
int hX, hY, hWidth, hHeight
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void ListBoxCtrl::goToPage(int pPageNumb) {
if(pPageNunb < 0)
gPageNunber = o;
if(gItenCount < (pPageNumb) * hHeight) return;
gPageNumber = pPageNub;

for(int y = hy; y <= (hHeight + hY); y++) {
for(int x = hX; x <= (hWidth + hX); x++) {
mvwaddch(gParent->hWnd, y, x, ' ')

for(int y = 0; y <= hHeight; y++) {
ListTten* item = glistItens[(pPageNurb * hHeight) + y1;
if(item 1= NULL) {
mvwprintu(gParent->hWnd, y + hy, 4, "%s", item->title);
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MessageBox

sprintf(id, "msgBoxwnd"):
sprintf(hTitle, "%s", pundTitle);
sprintf(hisgText, "%s", pisgText);

hwidth = strlen(piisgText) +
hHeight = 5;

int gActivewidth, gActiveHeight;

MessageBox(char *pWndTitle, char *pMsgText) {

getmaxyx(stdscr, gActiveHeight, gActivewidth);

hwnd = newwin(hHeight, hwidth,

((gActiveHeight - hHeight) / 2) + 1,

(gActivewidth - hwidth) / 2);

keypad(hwind, true);

box(hWnd, @, 0);
mowprintw(
hiind,

6, (hWidth - strlen(hTitle) - 4) / 2,

"\u2524 %s \u251c", hTitle

mvwpr intu(
hind, 2, 2, "%s", hMsgText

wbkgd(hWnd, COLOR_PATR(4)):

wrefresh(hind) ;

/1 <=~ draw window
/1 <-- draw window text in top borde

/1 <-- draw mes
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void FileManager::readDir(char* pDirPath) {

int object_index = o;
DIR *dir;

struct dirent *ent;

if (pDirPath) {
if ((dir = opendir(pDirPath)) 1= NULL) {  // if this di
sprintf(gCurrentPath, "%s", getRealPath(pDirPath)
object_index = 0;
ginterface->onResult(s, 1);

/* Print all the files and directories within directory */
while ((ent = readdir (dir)) 1= NULL) {
if(object_index >= 640) {
break;
} else if(strcmp(ent->d_name, ".") == 0) {
/* Excludes '.* from the list, since opening this
object returns the same directory. */
continu

¥
gEnts[object_index]
object_index+

¥
gFilesCount = object_index;
ginterface->onDirectoryRead(gents);
closedir (dir);

} else {
ginterface->onError(0, 2);

¥

} else ¢
ginterface->onError (9, 1
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class IFileManager {
public:
TFileManager() {}:
virtual ~IFileManager() {};
virtual void onérror(int cmdld, int errorCode)
virtual void onResult(int cmdId, int resultCode)
virtual void onDirectoryRead(dirent** ents) = o;

[
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class IPseudoGUIManager {
public:
TPseudoGUINanager () {}:
virtual ~IPseudoGUIManager() {};
virtual void onkeyPressed(char k) = 0;
virtual void onkeyPressed(char k, ExtWindowCtrl*
pExtiind) = o;
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ifeq (5
endif

CC_FLAGS
SA_CC_FU/

# Directs
SRC_DIR
LIBS_DIR
UT_DIR

# Librar.
EXT_INCLI
POSTLIBS

# Source
SOURCE:
UT_FILE

SA_OUT_FILS

ifeq (5

er (GCC b

OSTYPE), "msys")
cc

mingw-w64-x86_64-gcc

-g -std=c++98 -Wall -Wl,-01 -pipe -02 -flto=2 \
~fo-fat-1to-objects -fuse-linker-plugin ~fPIC

AGS -wall -c -g
ories needed ild

= src

Libs

= out
ies
UDES -L./src

= -Incursesw $(EXT_INCLUDES) -lstdc++
codes

(SRC_DIR)/*.cpp $(SRC_DIR)/utils/*.cpp $(SRC_DIR)/controls/*.cpp
=5 (UT_DIR) /knowledges
(OUT_DIR) /knowledges .o

OSTYPE), "msys")
LIBS. = -static -static-libgcc -static-libstdc++ -Incursesw $(EXT_INCLUDES)

OUT_FILE= $(OUT_DIR)/knowledges. exe
endif
# Clean files function
DEL_FILE m -f
# Targets
build: $(SOURCE)
$(CC) $(CC_FLAGS) $(LIBS) S(SOURCES) -0 $(OUT_FILE) $(POSTLIBS)
standalone
$(CC) $(SA_CC_FLAGS) $(LIBS) $(SOURCES) -0 $(SA_OUT_FILE)
$(CC) -0 $(OUT_FILE) $(SA_OUT_FILE)
clean

$(DEL_FILE) out/*
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#1/bin/bash

echo "Building Tinelix Knowledges.

if [[ $OSTYPE == "linux-gnu" 11; then
echo "Your 0S: GNU/Linux
echo
if [ -x "S(command -v apt)” 1; then #
su -c "apt install -y libncurses-dev"
elif [ -x "$(command -v yum)" 1; then #
su -c "yum install ncurses-devel”
elif [ -x "$(command -v pacman)" 1; then  #
su -c "pacman -S ncurses”
else
echo "ERROR: Your package manager is not supported"
echo
exit 1
i

elif [ $OSTYPE ygwin® 1; then
echo "Your 0S: Cygwin/Windows"
echo
if [ -x "S(command -v apt-cyg)" 1: then
apt-cyg install libncursesw-devel
else
echo "ERROR: 'apt-cyg’ not found"
exit 1
i
elif [[ SOSTYPE == "msys" 11; then
echo "Your 0S: MSYS2/Windows"

echo
paciian -S mingw-w64-{1686,x86_64}-ncurses

else
echo "ERROR: Your 05 is not supported"
echo
exit 1

i

make

echo

echo "Build completed!”

echo

echo "Run *./out/opendss’ for testing, 'gdb ./out/opendss’ +
cd ./out

- for Ubuntu/Debian/derivative
- for Fedora/Cent0s/A]

- for Arch/Artix/Manj

for debug”

Linux/derivatives

o/derivatives
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cd libs
git clone https://github.com/open-source-parsers/jsoncpp
cd jsoncpp

git checkout 8.10.7
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EXT_INCLUDES += -I./libs/jsoncpp/include
SOURCES += $(LIBS_DIR)/jsoncpp/src/lib_json/*.cpp
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